Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Phys Fluids (1994) ; 33(4): 045128, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1217723

ABSTRACT

As ongoing Corona virus disease 2019 pandemic is ravaging the world, more and more people are following social distancing norms, avoiding unnecessary outings and preferring online shopping from the safety of their home over visiting brick and mortar stores and neighborhood shops. Although this has led to a significant reduction in chances of exposure, human-to-human interaction at the doorstep of the customer might be involved during the delivery of the ordered items. This human-to-human doorstep interaction arises in some other situations also. There is a finite probability that the person standing in front of the door coughs or sneezes during such an interaction. In this work, a three dimensional (3D) Euler-Lagrangian computational fluid dynamic model is used to understand the transmission and evaporation of micrometer-size droplets generated due to a coughing event in this setting. Different possible scenarios varying in wind direction, wind velocity, ventilation in the vicinity of door, and extent of door opening have been postulated and simulated. The results obtained from numerical simulations show that in the presence of wind, the dynamics of transmission of droplets is much faster than the dynamics of their evaporation. Thus wind velocity and direction have a significant impact on the fate of the droplets. The simulation results show that even if the door is opened by a very small degree, cough droplets enter through the door. Having open windows in the vicinity of the door on a windy day is expected to reduce the chance of the exposure significantly.

2.
Phys Fluids (1994) ; 33(3): 033311, 2021 Mar 01.
Article in English | MEDLINE | ID: covidwho-1142507

ABSTRACT

As the world learns to live with COVID-19 and activities/business open up, the use of elevators becomes frequent. A pertinent question is what happens if someone accidentally coughs inside the elevator. In this work, a three dimensional Euler-Lagrangian model is used to understand the transmission and evaporation of micrometer-sized droplets in such cases. The effect of turbulence created by the air puff associated with coughing has been considered. Different possible scenarios varying in the presence of air ventilation within the elevator, number of persons coughing, direction of ejection of cough droplets, and ambient relative humidity and temperature have been postulated and simulated. The results obtained show that in the presence of proper ventilation within the elevator, most of the ejected cough droplets fall to the ground before impacting other persons traveling in the same elevator. However, in the absence of proper ventilation, the turbulence created during coughing transmits the particles all across the elevator enclosure.

SELECTION OF CITATIONS
SEARCH DETAIL